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Abstract

This paper describes an approach for constructing a classifier which is unaffected by occlusions in images. We propose a method for

integrating an auto-associative network into a simple classifier. As the auto-associative network can recall the original image from a partly

occluded input image, we can employ it to detect occluded regions and complete the input image by replacing those regions with recalled

pixels. By iterating this reconstruction process, the integrated network is able to classify target objects with occlusions robustly. To confirm

the effectiveness of this method, we performed experiments involving face image classification. It is shown that the classification

performance is not decreased, even if about 30% of the face image is occluded.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In general situations, recognition target in a given image

is often occluded by uninteresting objects (e.g. sunglasses

on human faces). If a recognition system can automatically

detect occluded regions in an image and estimate the

original information corresponding to those regions, it is

expected that the system will achieve improved recognition

ability and extended applicability. One of the methods for

realizing such functions is to incorporate a sort of auto-

associative memory into the system. As the auto-associative

memory can recall the whole image from partial data

(Kohonen, 1989), we can use the recalled image to

discriminate occluded pixels as outliers from those belong-

ing to a target object. It is also possible to reconstruct a

given image by replacing pixel values in the occluded

regions with the recalled pixel values. In light of this

principle, we investigate how to construct an auto-

associative network which can complete partly occluded
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images and is suitable for combining with a conventional

classifier.

In recent studies regarding view-based pattern

recognition, dimensionality reduction techniques such as

Principal Component Analysis (PCA) are often used before

classification. The eigenface method (Kirby & Sirovich,

1990; Turk & Pentland, 1991) is typical. Such a method can

be considered to have a feed-forward computation archi-

tecture as shown in Fig. 1(a). In this architecture, each input

data vector is processed using one-way transformation by

successively applying a dimensionality reduction algorithm

and a classification algorithm. In contrast to this, we adopt

an architecture which performs recurrent computation as

shown in Fig. 1(b). The lower part of tile figure describes an

auto-associative network that reconstructs an input vector as

well as reduces dimensionality. If an input image is partly

occluded or contaminated with outliers, the image is

completed by repeating these two processes. As a result,

dimensionally reduced feature components are extracted

without being affected by outliers, in other words, by pixels

in occluded regions. Accordingly, classification perform-

ance is improved in terms of robustness against occluded

images.

To implement the above function of auto-associative

network, PCA is employed. We can define a three-layer
Neural Networks 18 (2005) 958–966
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Fig. 1. A schematic diagram of (a) conventional classifier architecture and

(b) the proposed architecture.
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perceptron through PCA for given data. The perceptron

consists of linear units and performs linear dimensionality

reduction and reconstruction. The hidden-layer units extract

the principal components of an input while the output-layer

units reconstructs the input itself. It is known that such a

perceptron can be obtained via learning to map each input

vector onto itself (Baldi & Hornik, 1989; Diamantaras &

Kung, 1996). Besides PCA, we also use kernel PCA

(Schölkopf, Smola, & Müller, 1998). Kernel PCA can be

considered a natural generalization of standard (linear) PCA

and it enables us to extract non-linear feature components.

This paper is structured as follows. In Section 2, we

briefly describe PCA and introduce a computation method

called Recurrent Data Reconstruction. This is a procedure

to detect pixels in occluded regions and to replace their

values with estimated values by means of an auto-

associative network. In Section 3, this method is extended

to kernel PCA. Next, Section 4 shows some experimental

results of the application of our method to a face recognition

task. Section 5 discusses works related to our method, and

Section 6 concludes the present study. Part of the results

described in this paper have abstracted in two conference

proceedings (Kurita, Takahashi, & Ikeda, 2002; Takahashi

& Kurita, 2002).
2. Principal component analysis and recurrent

data reconstruction

This section introduces a computation process called

Recurrent Data Reconstruction. This is a method for

modifying data vectors repeatedly using the outputs of an

auto-associative network in order to remove outliers in data

vectors and to improve the network’s robustness. In this

section, we describe a recurrent data reconstruction process

for an auto-associative network created by applying

Principal Component Analysis to data vectors. Such a

network can be considered a three-layer perceptron

consisting of linear units.
2.1. Principal component analysis

Principal Component Analysis is a widely used tech-

nique in data analysis. The purpose of PCA is to find the

optimal linear transformation for extracting lower dimen-

sional feature vectors which can adequately describe a set of

high-dimensional data.

Consider an M-dimensional random variable x. It is

assumed that the mean of x is E[x]Z0 and the

covariance matrix CZE[xxT]. In PCA, the feature vector

y2RH(H!M) is computed as an orthogonal linear

transformation of x:

y Z Ux; (1)

where U denotes an H!M matrix which satisfies UUTZ
I. Then x can be reconstructed from y as the projection

onto the subspace spanned by column vectors of U:

z Z UTy Z UTUx: (2)

PCA seeks the optimal matrix U in terms of mean

squared reconstruction error:

Je Z E½jjx Kzjj2�: (3)

Let l1, l2,.,lN be the eigenvalues of C, and let their

corresponding normalized eigenvectors be e1, e2,.,eN.

The eigenvalues are assumed to be arranged in decreas-

ing order. It is then shown that the optimal matrix U

minimizing Je under the constraint UUTZI has the form

U� Z T½Ge1Ge2 /GeH�
T; (4)

where T is any square orthogonal matrix (Diamantaras &

Kung, 1996). It is also shown that the minimization of Je

is equivalent to the maximization of the variance of the

feature vector y:

Jv Z E½trðyyTÞ�: (5)

Hence, in regard to minimal reconstruction error and

maximal variance, U* gives the feature vector which

describes the data’s characteristics more accurately than

does any other H-dimensional linear transformations.

In most applications, the covariance matrix is estimated

by a sample covariance matrix. Consider a set of data

fxi 2RMgN
iZ1 (6)

whose sample mean 1
N

PN
iZ1 xiZ0. The sample covariance

matrix ĈZ 1
N

PN
iZ1 xix

T
i . Then the matrix U is found by

solving the eigenvalue problem of Ĉ:

Ĉe Z le: (7)
2.2. Recurrent data reconstruction

In the field of pattern recognition, PCA has been widely

applied in order to reduce the dimensions of the data. It

enables us to extract a small number of feature components
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called principal components which account for variation in

high-dimensional data. Accordingly, it is useful in reducing

the computational costs involved in treating real-world data.

In case of face recognition, for instance, it is known that

dozens of principal components of human face images are

sufficient as inputs to a classifier for recognition (Turk &

Pentland, 1991).

Besides computational costs, PCA-based dimensionality

reduction reduces the detrimental influence of undesirable

change in input data by discarding minor components. The

principal components of face images are less affected by

small levels of noise or minute changes of expression,

lighting conditions, etc. than are raw images; therefore, they

are effective for face recognition. However, most principal

components are seriously affected by the contamination of

some input components by outliers. They also have a great

influence on reconstruction. Fig. 2 shows examples of a

reconstruction from face images with outliers. Hence, in

order to accomplish robust recognition using the PCA-based

technique, it is necessary to improve the dimensionality

reduction process.

As an approach to the above problem, we introduce a

method composed of two steps: (1) detecting outlier

components in each input vector, and (2) replacing each

outlier component with some estimated value. In the first

step, component-wise errors between an input and its

reconstruction are used. If some input component is an

outlier, it is expected to have a large error. In the second

step, the detected outlier components are replaced with the

corresponding components of the reconstruction. These

steps can be applied repeatedly. If a partly occluded face

image is inputted, the principal components should

represent the features of the original unocculded face

image and the reconstruction should be a accurate

approximation of it after the repetition of these stops. We

refer to this method as Recurrent Data Reconstruction

(RDR).

The detailed procedure of recurrent data reconstruction is

described as follows.

Step 0: The iteration parameter t is initialized as tZ0 and

some initial value is assigned to the input vector ~x0.
input

original

PCA reconst.

Fig. 2. Examples of occluded images and their reconstruction. Top row:

original face images. Middle row: partly occluded images. Bottom row:

their reconstruction via PCA.
Step 1: The vector of the principal components yt and

the reconstructed input zt is computed with respect to the

input ~xt.

yt Z U ~xt (8)

zt Z UTyt Z UTU ~xt (9)

Step 2: The M!M diagonal matrix AtZdiag(a1t,

a2t,.,aMt) is set as

ajt Z
0 if jxj KzjtjR2:5sj;

1 otherwise

(
(10)

where zjt denotes the jth component of the reconstruction zt,

and sj is the constant defined later.

Step 3: The new input ~xtC1 is computed from the original

input x and the reconstruction zt as

~xtC1 Z Atx C ðI KAtÞzt: (11)

Step 4: If t reaches the specified value, the procedure is

terminated. Otherwise, set t)tC1 and we move to Step 1.

Eq. (10) means that the jth component of the original

data, xj, is identified as an outlier if the difference between xj

and the corresponding component of the tth reconstruction,

zjt, is large. Eq. (11) means that xj is replaced as the new

input for the next iteration by zjt (see also Fig. 3).

The constants ajt (jZ1,2,.,M) represent the standard

deviations of the errors. They are estimated by robust

statistical method (Huber, 1981) based in advance on training

data. When the training data set is given by Eq. (6) and each
Fig. 3. Dimensionally reduction and reconstruction by PCA.

(a) Conventional reconstruction and (b) Recurrent data reconstruction.
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datum is reconstructed as ziZUTUxi, sj is defined as:

sj Z 1:4826 1 C
5

N K1

� �
med

i
jxij Kzijj: (12)

Here med(x) denotes the median of {x}, and xij and zij are

the jth component of xi and zi, respectively.

In addition to the above, it is necessary to define the

initial value ~x0. The simplest way of setting the initial value

is to set it as ~x0Zx. We confirmed in our preliminary

experiments that this initial value produced robust results.

However, the following method was found to give more

robust results. First, the standard deviation of each

component of xi is estimated as

s0
j Z 1:4826 1 C

5

N K1

� �
med

i
jxij K �xjj; (13)

where �xjZ
1
N

PN
iZ1 xij. Next, ~x0 is computed in the same

way in that ~xtC1 is computed by Eqs. (10) and (11) using sj,

zij, and zt, but using s0
j , �xj, and �xZ 1

N

PN
iZ1 xi.

2.3. Convergence property of recurrent data reconstruction

From Eqs. (9) and (11), the following relationship holds

between zt and ztCl

ztC1 Z UTU ~xtC1 Z UTUðAtx C ðI KAtÞztÞ (14)

Z zt CUTUAtðx KztÞ (15)

because UTUztZzt. Let us consider the case that zt

converges to a fixed point zN as t/N. Then

zN Z zN CUTUANðx KzNÞ; (16)

and hence

UANðx KzNÞ Z 0 (17)

should hold. Eq. (17) indicates that the vector AN(xKzN) is

orthogonal to the principal subspace spanned by the first H

eigenvectors e1,e2,.,eH. Therefore, ANzN, the vector

obtained by substituting zero for the outlier components

of zN, has the same H principal components as those of

ANx. If no component is identified as an outlier, i.e., if

ANZI, the reconstruction becomes identical to that

obtained by conventional principal component analysis.

From these properties, we can expect that recurrent data

reconstruction effectively extracts the principal feature

components of the data when their outlier components are

successfully identified.

3. Recurrent data reconstruction for kernel PCA

In Section 2, we described the process of

recurrent data reconstruction with the premise that

dimensionality reduction and reconstruction is based on

linear PCA. However, the process does not depend on
the specific architecture of the auto-associative network.

For our proposes, we can use a variety of network

architectures such as five layer non-linear perceptron,

kernel PCA, or a Hopfield network. In this section, we

describe a method to combine recurrent data reconstruc-

tion with the data reconstruction process based on kernel

PCA.
3.1. Kernel PCA

Kernel PCA can be derived using the known fact that

PCA can be carried out on the dot product matrix instead of

on the covariance matrix (Moerland, 2000; Schölkopf et al.,

1998). Given a set of training data by Eq. (6), kernel PCA

first maps the data into some feature space F by a function

F: RM/F, and then performs standard PCA on the mapped

data.

Defining the data matrix X by XZ[F(x1)F(x2).F(xN)],

the sample covariance matrix in F becomes

Ĉ Z
1

N

XN

iZ1

FðxiÞFðxiÞ
T Z

1

N
XXT: (18)

For simplicity, we assume that the mapped data

are centered, i.e. 1
N

PN
iZ1 FðxiÞZ0. This is not the case

in general; however, all calculations can be reformulated

to deal with centering (Schölkopf et al., 1998). Although

it is in some cases intractable to carry out the direct

eigen decomposition of Ĉ, we can find the eigenvalues

and eigenvectors of Ĉ via solving the eigenvalue

problem:

lu Z Ku: (19)

The N!N matrix K is the dot product matrix defined

by

K Z
1

N
XTX; (20)

where

Kij Z
1

N
FðxiÞ$FðxjÞ Z

1

N
kðxi; xjÞ (21)

and k(x, y)ZF(x)$F(y) denote the kernel function which

substitutes the dot product x$y.

Let l1R.RlP be the non-zero eigenvalues of K

(P%N and P%M), and u1,u2,.,uP the corresponding

eigenvectors. Then Ĉ has the same eigenvalues and there

is a one-to-one correspondence between the non-zero

eigenvectors {uh} of K and the non-zero eigenvectors {vh}

of Ĉ

vh Z rhXuh; (22)

where rh is a constant for normalization (Moerland, 2000).

If both of the eigenvectors have unit length, rhZ1=
ffiffiffiffiffiffiffiffi
lhN

p
.

In the following discussion, we assume jjuhjjZ1=
ffiffiffiffiffiffiffiffi
lhN

p
so

that rhZ1.



T. Takahashi, T. Kurita / Neural Networks 18 (2005) 958–966962
For a test data x, its hth principal component yh can be

computed using kernel functions:

yh Z vh$FðxÞ Z
XN

iZ1

uhikðxi; xÞ: (23)

Then the F-image of x can be reconstructed from its

projections onto the first H(%P) principal components in F

by using a projection operator PH:

PHFðxÞ Z
XH

hZ1

yhnh: (24)

The procedure of kernel PCA is equivalent to that of

standard PCA on the mapped data. Hence, kernel PCA

inherits some properties of standard PCA. For instance, the

reconstruction error
P

i jjFðxiÞKPHFðxiÞjj
2 is

minimal among all H-dimensional projection operators in F.
Fig. 4. Sample images in the training data set (top row) and in the test data

set (bottom row).
3.2. Recurrent data reconstruction using Gaussian kernels

In order to apply recurrent data reconstruction to kernel

PCA, it is necessary to reconstruct the data in the input

space RM rather than in F. This can be achieved by seeking a

vector z satisfying F(z)ZPHF(x). If such a z exists, it will

be an accurate approximation of x in the input space.

However, it will not always exist and it may not be unique

even if it does exist. Gaussian kernels k(x, y)Zexp(KkxK
yk2/c) come under this case.

To settle the problem, Mika et al. (1999) proposed to

approximate z by minimizing r(z)ZkF(z)KPHF(x)k2. For

kernels satisfying k(x, x)hconstant for all x, we can

maximize the following expression instead of r(z)

~rðzÞ Z FðzÞ$PHFðxÞCU Z
XN

iZ1

wikðxi; zÞCU; (25)

where

wi Z
XH

hZ1

uhiyh (26)

and U denotes the terms independent of z. Employing

standard gradient ascent methods for this, they derived an

iteration scheme for computing optimal z. Their iteration

scheme is given as follows:

ztC1 Z

PN
iZ1 wikðxi; ztÞxiPN

iZ1 wikðxi; ztÞ
: (27)

The recurrent data reconstruction procedure for kernel

PCA is obtained by combining the above iteration scheme

into the step reconstructing z. Step 1 is modified as follows.

Step 1: The vector yt consisting of the H principal

components is computed with respect to the input ~xt by

yht Z
XN

iZ1

uhikðxi; ~xtÞ: (28)
Next the corresponding reconstruction zt is computed by

wit Z
XH

hZ1

uhiyht (29)

zt Z

PN
iZ1 witkðxi; ~xtÞxiPN

iZ1 witkðxi; ~xtÞ
: (30)

The other steps are the same as those described in Section 2.2.
4. Experiment

In order to confirm the effectiveness of the proposed

method regarding robustness against occluded images, we

performed experiments using face images.

4.1. Conditions of the experiments

Face images were taken from the ARFace Database

(Martinez & Benavente, 1998). The training data set

consisted of NZ171 images (3 for each of 57 people)

with 256 gray levels. The size of each image was

normalized to 24!32(Z768). Examples of these face

images are shown in the top row of Fig. 4.

PCA and kernel PCA were applied to these data. The

dimensionality of the data was MZ768. For kernel PCA, we

chose Gaussian kernels with cZ0.08 M. The parameter c

was tuned by hand to attain lower error rates in the

classification experiments described below. In the cases of

both PCA and kernel PCA, the number of extracted

principal components was set to HZ25. It was chosen to

coincide with the dimensionality in which 92% of the total

variance of the training data was preserved using PCA.

These H-dimensional vectors (principal components)

were modified through recurrent data reconstruction in

order to reduce the influence of outliers, and the resulting

vectors were provided as inputs to a classifier. We adopted a

multinomial logit model as the classifier (see Appendix).

The robustness of the proposed method was investigated

in regard to two aspects: reconstruction error and classifi-

cation error. In the reconstruction experiments, the

proposed method was used to recall a person’s face

image in the training data based some test images.
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Fig. 5. Reconstruction errors for the test data with artificial occlusions.
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Reconstruction performance was measured by mean

squared errors between a reconstructed image and each of

the three training images of the same face. On the other

hand, in the classification experiments, the task was to

classify test images into one of 57 classes according to the

person’s identities. Classification performance was

measured by error rate, i.e. the ratio of misclassification to

the total number of test data.

The test data set was composed of three types: pixel-wise,

rectangular, and sunglass. The examples are shown on the

bottom row of Fig. 4. The former two sets of data were

generated by adding artificial occlusion to different images of

the same 57 people (one for each person). The images in the

pixel-wise data set were made by flipping each pixel to black

or white with some constant probability, while those in the

rectangular set were made by replacing some rectangular

regions with black or white rectangles. On the other hand, the

sunglass data set consisted of real-face images wearing

sunglasses. The size of the pixel-wise and rectangular sets

was 570 (10 different patterns of occlusion for each of

57 images). The sunglass set consisted of 57 images.
Table 1

Reconstruction errors for sunglass data

PCA kPCA

RDR

tZ0 7.17 6.53

tZ10 7.58 5.10

tZ20 7.73 5.00

Conventional 13.86 9.86
4.2. Reconstruction experiments

Fig. 5 and Table 1 show the reconstruction errors

obtained by the proposed method. For quantitative com-

parison, the reconstruction errors obtained when not

applying the proposed method (conventional reconstruction

method by PCA) are also shown. It is noticed that the

proposed recurrent data reconstruction method improves
the robustness regarding occlusions with the repetition. It

can also be seen that kernel PCA gives more robust results

than does linear PCA.

Fig. 6 shows some examples of the test images and the

reconstructed images. The occlusion ratios of the pixel-wise

and rectangular test images were 0.4 and 0.2, respectively.
4.3. Classification experiments

Fig. 7 and Table 2 show the error rates of the

classification experiments. Here we can see the same

tendencies for robustness as in the reconstruction exper-

iments. It is confirmed that the classification accuracy is

significantly improved by applying the proposed recurrent

data reconstruction method.
5. Discussion

The proposed method employs two computation pro-

cesses based on PCA: the dimensionally reduction process
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Fig. 7. Classification error rates for the test data with artificial occlusions.

input

original

conventional

RDR (t=20)

estimated 

   outliers

pixel-wise    rectangular   sunglasses

Fig. 6. Reconstruction from the occluded test images. input: test images. original: original images corresponding to the test images. conventional:

reconstruction via conventional kernel PCA. RDR (tZ20): reconstructed images after iterating the recurrent data reconstruction process 20 times. estimated

outliers: black pixels correspond to estimated outliers pixels (ajtZ0) while white pixels indicate ajtZ1.

Table 2

Classification error rates for sunglass data

PCA (%) kPCA (%)

RDR

tZ0 17.5 (10/57) 15.8 (9/57)

tZ10 12.3 (7/57) 7.0 (4/57)

tZ20 12.3 (7/57) 5.3 (3/57)

Conventional 60.0 (34/57) 61.4 (35/57)

T. Takahashi, T. Kurita / Neural Networks 18 (2005) 958–966964
and the reconstruction process. The dimensionality

reduction computation extracts feature components from

data while reducing the dimensionality of the data, and

the reconstruction computation recovers the data while

removing the influence of outliers. Thus, these processes

play the most important role in the proposed method. There

are several related works which focus on improving the

robustness of standard PCA.

In the field of neural networks, it is well known that

multi-layer networks can perform such PCA-like



T. Takahashi, T. Kurita / Neural Networks 18 (2005) 958–966 965
computation. Xu and Yuille (1995) proposed a learning

algorithm for robust PCA. By using their algorithm, the data

vectors of outliers can be discriminated from regular data

vector. Although their algorithm allows the complete

rejection of each data vector, it does not work in a case in

which some components of each data vector are outliers

constituting occluded images.

Black et al. investigated a robust algorithm for PCA

(Black & Jepson, 1996; De la Torre & Black, 2001). Their

method uses M-estimation for discriminating outliers and

seeking principal components. Sakaue and Shakunaga

proposed a similar algorithm (Sakaue & Shakunaga,

2004). These related works aim to develop a method for

removing outliers in data vectors, and therefore, their

approaches are similar to ours. However, one unique

characteristic distinguishes our method from theirs. Unlike

these approaches based on linear PCA, our approach can

employ a variety of computation algorithms other than

linear projections. In the present paper, we adopted kernel

PCA and showed experimentally that it outperformed the

method based on linear PCA.

In addition to the above, the proposed method may be

reasonable from a neuroscientific point of view. In the

primate cerebral cortex, visual information is processed in

the primary visual cortex (V1), and output signals from V1

are further processed in successive areas along the visual

pathways. It is well known that reciprocal connections exist

among these cortical areas. For instance, forward neuronal

connections from V1 to the neighboring areas are always

accompanied by backward connections. Many researchers

have investigated the function of such reciprocal connec-

tivity and proposed computational models. Fukushima

(1987) proposed a model for selective attention with

reciprocal neural connections. Okajima (1991) also showed

by simulation experiments that a system backward connec-

tions can separate an object pattern from a background in a

given image. Our neural network model can be considered a

model that advocates the importance of recurrent compu-

tation in a biological visual system.
6. Conclusion

In this paper, we studied how to construct a classifier

which is unaffected by occlusions in an image. We proposed

a method to integrate an auto-associative network into a

simple classifier. The auto-associative network is used to

detect occluded regions and fill them with estimated original

pixel values. By applying this process recursively, the

integrated network can classify occluded images robustly.

The effectiveness of the proposed method was confirmed by

the result of experiments regarding face image classifi-

cation. It was shown that stable classification performance

was obtained even if 20–30% of the face images were

occluded. We intend to apply this method to other tasks

including face detection or moving object tracking.
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Appendix. Multinomial logit model

The multinomial logit model is a special case of

generalized linear models (McCullaph & Nelder, 1983),

and it can be regarded as one of the simplest neural network

models for solving a multi-way classification problem. This

network model consists of only two layers: an input layer

and an output layer. The output values of the network are

computed through softmax competition among the output

layer units. Let us consider a problem involving the

classification of each L-dimensional vector into one of the

K classes {C1,.,CK}. The input and the output, layer

consist of L and KK1 units, respectively. For a given input

vector x2RL, the output values of the output layer units,

pk(kZ1,2,.,KK1), are computed as

pk Z
expðhkÞ

1 C
PKK1

k 0Z1 expðhk 0 Þ
: (31)

The value hk represents a weighted sum of the input

components

hk Z uT
k x; (32)

where uk denotes the weight vector between the input layer

and the kth output unit. Each value pk can be considered an

estimate of the probability that x belongs to the kth class,

and pK is given by

pK Z
1

1 C
PKK1

k 0Z1 expðhk 0 Þ
: (33)

Thus

XK

kZ1

pk Z 1:

For this probabilistic model, the learning process of the

network can be regarded as the maximum likelihood

estimation of the parameters {u1,.,uKK1}. Consider a

set of training data with teacher signals fððiÞx;ðiÞ tÞgN
iZ1, where

tZ ððiÞt1;.;ðiÞ tKÞ
T 2f0; 1gK denotes a vector composed of

binary teacher signals: (i)tkZ1 if (i)x should be classified into

Ck, otherwise (i)tjkZ0. Then the likelihood of the classifier

for the training data is given by

PðtjxÞ Z
YN
iZ1

YK
kZ1

ðiÞp
ðiÞ

tk

k ; (34)
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and hence the log-likelihood becomes

[C Z
XN

iZ1

XKK1

kZ1

ðiÞtk
ðiÞhk K

XN

iZ1

log 1C
XKK1

kZ1

expððiÞhkÞ

 !
: (35)

Learning rules for the network are derived by consider-

ing the maximization of [C. By employing a

standard gradient method, we can derive the updating

rules of the network’s weights by taking partial derivatives

of [C

Dukj Za
XN

iZ1

ððiÞtk KðiÞpkÞ
ðiÞxj; (36)

where a is a constant which controls the learning rate.
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